Rosa L. – Rose
The taxonomy of the genus Rosa is subject to considerable difficulties due to its reproductive biology, its lack of clear morphological and partly also genetic differences between many species, and additionally due to the influence of rose breeding (e.g. Wissemann 2003, Koopman et al. 2008, Smulders et al. 2011, Kellner et al. 2014).
The reproductive strategies of roses range from apomixes, self-pollination to cross-pollination (Wissemann & Hellwig 1997, Werlemark 2000, Nybom et al. 2006, Wissemann & Ritz 2007). Hybridization plays an important role in the evolution of the genus (Wissemann & Ritz 2005, 2007, Joly et al. 2006, De Cock et al. 2008, Ritz et al. 2011, Smulders et al. 2011, Fougère-Danezan et al. 2015).
The most species-rich and taxonomically critical group in Central Europe, the dog roses (sect. Caninae (DC.) Ser.), contain, in contrast to almost all other sections, exclusively polyploids (see Table 2). Molecular analyses confirm the hybridogenic origin of the section, which has been suspected for a long time. The formation of this polyploid complex probably involved progenitors from section Synstylae and Rosa (Ritz et al. 2005, Kovarik et al. 2008, Zhang et al. 2013, Fougère-Danezan et al. 2015, Herklotz et al. 2018). The Caninae are characterized by their unique, irregular meiosis, also known as Canina-meiosis (Täckholm 1920, 1922). This enables the predominantly pentaploid (2n = 5x = 35) dog roses to reproduce sexually despite their odd set of chromosomes.
During Canina-meiosis, only 14 chromosomes pair (2 sets á 7 homologous chromosomes = bivalents), while the remaining 21 chromosomes remain unpaired (univalents). Recombination, therefore, only takes place between bivalents. Only one set of bivalents is transferred to the pollen grains, all 21 univalents are transferred to the egg cells in addition to one set of bivalents. In case of tetra- or hexaploid taxa only the number of univalents (14 or 28) changes. Canina-meiosis thus combines sexual reproduction (recombining bivalents) and apomixis (non-recombining, maternally inherited univalents), which is why dog roses are also called hemisexuals (Nybom et al. 2004, 2006).
Due to the unequal proportions of paternal and maternal genetic material, the offspring of dog roses are very similar to their maternal parents (matroclinous inheritance). For some relevant fruit characteristics (sepal persistence and diameter of orifice), a paternal inheritance was shown (Ritz & Wissemann 2003). Growth form appears to be independent of the sex of the parents because the lax growth form is dominantly inherited (Wissemann et al. 2006). Due to these genetic features, it is almost impossible to recognize primary hybrids as such in the field. They are mostly fertile and often correspond to already described species (Wissemann & Hellwig 1997, Ritz & Wissemann 2003). For the hexaploid Rosa micrantha Sm., it has already been demonstrated that it is an interspecific hybrid of R. rubiginosa L. (seed parent) and R. canina L. or R. corymbifera Borkh. (Ritz & Wissemann 2011, Herklotz et al. 2017). Similarly, Herklotz & Ritz (2014) Herklotz et al. (2017) assume that Rosa agrestis Savi is also an interspecific hybrid of R. inodora Fr. and R. canina L. or R. corymbifera Borkh.
The strongly pronounced ability to hybridize and a probably recent post-glacial radiation provide explanations for the low morphological differentiation of many rose taxa (Wissemann & Ritz 2005, De Cock et al. 2008). The Central European wild roses, especially the dog roses, are polymorphic taxa. Their morphological characters vary within species between geographically separated populations (Henker 2000, De Cock et al. 2008) and in part also within years for the same individual (Herklotz & Ritz 2014). The delimitation of the taxa is therefore difficult and strongly dependent on the applied taxonomic concept (Henker 2000).
Until the end of the 19th century, very narrow species concepts, taking into account the smallest morphological differences, led to an inflationary description of new species, especially within the dog roses (see Wissemann 2003). Christ (1873) was the first to initiate a change by taking into account all of the characteristics in the description of the species and assigning more weight to a combination of characters than to separating individual characteristics.
Christ (1873, modified by Dingler 1907) was the first to recognize two different growth forms within dog roses. These growth forms describe a combination of morphological characters correlated with the habit and, following a suggestion by Reichert (1998a), are called L- (from lat. laxus = loose) and D-type (from lat. densus = dense). Intermediary transitional forms are grouped together as L/D types (for characteristics of the types, see Description). The L- or D-type can be assigned to the morphologically, relatively easy to recognize "corner species" within the Caninae. In between, there is a large group of intermediate forms with fluctuating characteristics which are assigned to the L/D type and are also regarded as separate species (Table 1). As crossing experiments have shown, these cannot be evaluated as primary hybrids between the "corner species" since crossings between L- and D-type roses do not yield L/D types, but L- or D-types as well (Wissemann & Hellwig 1997, Ritz & Wissemann 2003). This indicates that the respective group of 3 species (2 more narrowly defined corner species + 1 loosely defined intermediate species) actually represents only one group of 2 species whose characteristics overlap in the range of the L/D type (Wissemann et al. 2006). Based on morphological and genetic studies by Herklotz et al. 2017) Ritz (2021) distinguished only two species within the former 3-species groups for the subsect. Rubigineae in 22th edition of the Rothmaler Flora. No comparable morphological and genetic studies are yet available for the subsect. Vestitae of the R. tomentosa group and the dog roses in the narrower sense, which is why all three growth types are still listed as independent species.
In addition to the evolutionary complexity, the long cultural history of the genus complicates rose taxonomy. Already Herrmann (1762) complained about the fusion of the species in horticulture rendering further recognition impossible. Long-cultivated species, such as the apple rose (Rosa villosa L.), are particularly problematic in this respect (see Kellner et al. 2014). Further examples of taxonomic problems related to the history of cultivation are several hybridogenic cultivars originating from Rosa gallica L., which are often regarded as species (e.g. Rosa alba L., R. centifolia L., R. damascena Mill.; see Henker 2000, Wissemann 2003). For a long time, Rosa centifolia L., was even the type of the genus Rosa (lectotypification by Britton & Brown 1913). In the meantime, based on a proposal by Rowley (1976, 1992), this unsuitable generic type has been replaced by Rosa cinnamomea L. (McNeill et al. 2006, App. III E3, p. 389).
The systematic classification of the genus Rosa commonly applied today is based on the classification system of Rehder (1940) and subsequent updates by Henker (2000) and Wissemann (2003). According to this morphological classification, the genus is divided into four subgenera, of which three comprise only a few exclusively diploid species with a restricted distribution area. The by far largest subgenus Rosa comprises both diploid and polyploid species and is divided into 10 sections, whereby the section Caninae is subdivided into several subsections (Table 2).
Although molecular-based phylogenetic studies resulted in at least partially contradictory results, the majority of them show that the morphologically-based systematic classification of the genus can only be partly maintained (e.g. Wissemann & Ritz 2005, Bruneau et al. 2007, De Cock et al. 2008, Koopman et al. 2008, De Riek et al. 2013, Fougère-Danezan et al. 2015, Debray et al. 2021).
** Basic chromosome number x = 7
The genus Rosa is distributed mainly in the northern hemisphere and found mainly in the temperate zones of the Holarctic (Henker 2000). Only four of the approximately 200 species also occur in tropical mountains south of the Holarctic. The main distributional focal point of the roses is the nemoral zone.
In Europe, the genus is widespread from the Mediterranean to the boreal zone, from the Atlantic to continental Eastern Europe and from the lowlands to the sub-alpine altitudinal level (Henker 2000). The majority of our native wild roses occur in open locations, on weakly acidic to weakly alkaline, mostly calcareous soils. Very nitrogen-rich sites are generally avoided.
The species of the genus Rosa considered in the portal are deciduous shrubs with branches bearing either similar (homoeacanth) or different (heteracanth) types of prickles. The spirally arranged leaves are imparipinnate and have stipules. The hermaphroditic flowers are in terminal and axillary, racemose to paniculate inflorescences, some of which are corymbs, or reduced to solitary flowers only. They have a pentamerous, two-whorled perianth. The sepals are either all undivided or the two outer ones are on both sides, the middle one only on one side partially pinnate or rather bear single filamentous appendages. After flowering, sepals are reflexed, protruding or erected. At fruit maturity, they are deciduous or persisting on the ripe fruit. The petals are pink to purple or white. Stamens and carpels are numerous. The former are located at the edge of the hypanthium (jar-like axial organ = receptacle), the latter at its base or inner wall. The upper part of the hypanthium is formed as a disc (not functional, without nectar production) with the stylar orifice in its centre. Through this, the mostly free, or only in a few species connate, styles come out as bundles. The stigmas form a head protruding from the hypanthium which is either hemispherical (hat-shaped) or bouquet-shaped. The stigma heads do either directly cover the disc or are protruding. During fruiting, the hypanthium enlarges and forms a fleshy to leathery, mature red to orange, more seldom brown or black, aggregate fruit, the rose hip containing the nutlets.
The characteristics of the growth types which are very valuable for the characterization of dog roses (section Caninae) can be summarized as follows according to Reichert (1998a) and Henker (2000) (see also Table 1):
- L-type (lat. laxus = loose): mostly high bushes of loose growth, with long, often overhanging, loosely leafed shoots; sepals reflexed after flowering and deciduous before fruit ripening; pedicels more than half as long, usually as long, sometimes longer than rose hips, protruding from bracts and thus giving inflorescences a loose appearance; orifice long and narrow (approx. 0.4–0.8 mm in diameter) and the disc ring wide; styles almost never villous, often glabrous; stigma heads protruding bouquet-like from the orifice; long ripening period for the rose hips (early flowering – late ripening)
- D-type (lat. densus = dense): bushes of dense, compact growth, short-branched, densely leafed; sepals oblique to steeply erect after flowering and persisting on the ripe fruit; pedicels usually up to half as long, partly as long as rose hips, more or less covered by the bracts and inflorescences thus compact; orifice short and wide (diameter from approx. 1.1 mm) and disc ring narrow; style densely villous; stigma heads hat-shaped covering the disc; short ripening period of rose hips (late flowering – early ripening)
- L/D type (transitional form between L- and D-type): growth form and other characteristics more or less intermediate; sepals fluttering after flowering (erect to reflexed), sooner or later deciduous; orifice moderately narrow to wide (diameter ± 1 mm)
(cf. Henker 2000, 2011)
As is the case with all identification-critical groups, not only one character, but the entire complex of characters of a species must be taken into account for the determination of most rose species. Since the rose hip shows several characters (diameter of the orifice; shape of the disc; position and persistence of sepals; length of pedicel; presence of glands at the pedicel and the fruit), many rose species can be only determined at the fruit maturity. It should be noted here that the central fruit of an infructescence is usually larger, has a shorter pedicel, a larger diameter of the orifice and a different shape. Information on fruit characters, therefore, always refers to lateral rose hips of an infructescence. Reichert (1998b, 2011) even recommends using only single hips (inflorescences reduced to single hip) for comparative measurements. According to his investigations, the characters reduced inflorescences are intermediate between central and lateral hips of larger inflorescences. Thus, it is important to use more than one fruit for determination. Henker (2000) recommends, for example, determining the mean value from about 10 measurements of the orifice diameter. Furthermore, with regard to the diagnostically important characters, the following must be taken into account:
- Growth habit − to be documented in the field
- Spination − generally refers to prickles on flowering shoots; often deviating on sterile annual shoots, but heteracanth prickles often particularly pronounced on annual shoots
- Leaf pubescence − eaves may become glabrescent during season, if in doubt check youngest leaves
- Rhachis − is also considered as glabrous if there are a few hairs in the groove on the top of the rhachis or at the insertion of leaflets
- Glands − may decline during season; glandular heads can break off; test the scent of the glandular secretions by grinding fresh leaves (usually no longer perceptible on herbarium specimens)
- Sepals − persistent drought can lead to premature sepal drop off (especially with wind) and can also interfere with sepal position (i.e. may cause fluttery position of sepals in species with normally erect sepals, see also remarks on weather-dependency sepal characters in Christ 1873 p. 20, Bomble 2012, Herklotz & Ritz 2014)
- Stylar orifice − determine diameter at the narrowest point; for oval orifice (seldom), use mean value of smallest and largest diameter
- Stigma head − in herbarium specimens stigma heads may appear as bouquet-like because of shrinkage
- Length of pedicel in comparison to length of fruit − when estimating the length ratio, the length of the pedicel is usually overestimated due to optical illusions (Reichert 2011), the author holds the view that the relevant information in the determination literature (also in Henker 2000) is often based on estimates, and measurements of the feature would lead to different information
Ideally, roses should be collected shortly before or during rosehip reddening (August to early September) for yielding useful herbarium specimens. This has the advantage that the sepals have taken their final position on the ripening fruits, but are still relatively firm (on ripe fruits of some species the sepals have already fallen off). Since the sepals can still fall off during herbarization, it is advisable to document the sepal position in any case. For specimens, it would be best to collect not only a branch with several rose hips and characteristic prickles, but alternatively three upper parts of the fruit cut off under the base of the sepals, or alternatively, three centrally, longitudinally cut fruits (two each without and one with a style bundle). Henker (2000) also recommends to collect annual shoots (especially in the case of heterogeneous or varying spination), two typical leaves with stipules, flower-bearing branches of the same bush, and individual petals (with documentation of their color). The collection of flowers is desirable, but this generally requires a second collection during fruit maturity.
The species concept following Henker (2000, 2011) and Ritz (2021) was used for the portal. Accordingly, infraspecific taxa are not recognized. For some of the specimens displayed, however, determinations of subspecies or rather, varieties are given. In these cases, the most important characters of the taxon are indicated on the specimen page under "Remarks on determination".
The portal contains all species occurring in Germany, which are given in the key by Henker (2000, 2011), and additionally to this, Rosa gremlii (Christ) Gremli is shown. In accordance with the new edition of the Rothmaler Flora (Ritz 2021), however, some of the spp. previously treated as independent species were combined under a wider taxon (sensu lato).
The characters of the species essentially follow the treatment by Henker (see collection and determination notes). For the characters of R. gremlii (Christ) Gremli and R. multiflora Thunb., the works of Henker & Schulze (1999) and Gu & Robertson (2003) were also used.
We would like to thank Heinz Henker and Hans Reichert, Michel Simon as well as the Herbarium of the Justus-Liebig University in Gießen (GI) and the Herbarium of the Martin-Luther University in Halle (HAL) and Botanical State Collection Munich (M) for providing instructive herbarium specimens.
Bomble, F. W. 2012. Zur Taxonomie von Rosa brilonensis und ähnlichen Arten im Aachener Raum. Floristische Rundbriefe 45/46: 21-31.
Britton, N. L. & Brown, A. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. II: Amaranthaceae to Loganiaceae. 2. Auflage. Charles Scribner's sons, New York: 282.
Bruneau, A., Starr, J. R. & Joly, S. 2007. Phylogenetic relationships in the genus Rosa: New evidence from chloroplast DNA sequences and an appraisal of current knowledge. Systematic Botany 32: 366-378.
Christ, H. 1873. Die Rosen der Schweiz mit Berücksichtigung der umliegenden Gebiete Mittel- und Süd-Europas: Ein monographischer Versuch. H. Georg’s Verlag, Basel, Genf, Lyon. (Volltext)
Debray K., Le Paslier M.C., Berard A., Thouroude T., Michel G., Marie-Magdelaine J., Bruneau A., Foucher F. & Malecot V. 2021. Unveiling the patterns of reticulated evolutionary processes with phylogenomics: hybridization and polyploidy in the genus Rosa. Systematic Biology 71(3): 547-569. (https://doi.org/10.1093/sysbio/syab064)
De Cock, K., Vander Mijnsbrugge, K., Breyne, P., Van Bockstaele, E. & Van Slycken, J. 2008. Morphological and AFLP-based differentiation within the taxonomical complex section Caninae(subgenus Rosa). Annals of Botany 102: 685-697.
De Riek, J., De Cock, K., Smulders, M. J. M. & Nybom, H. 2013. AFLP-based population structure analysis as a means to validate the complex taxonomy of dogroses (Rosa section Caninae). Molecular Phylogenetics and Evolution 67: 547-559.
Dingler, H. 1907. Versuch einer Erklärung gewisser Erscheinungen in der Ausbildung und Verbreitung der wilden Rosen. Mitteilungen des Naturwissenschaftlichen Vereins zu Aschaffenburg 6: 1-38.
Fougère-Danezan, M., Joly, S., Bruneau, A., Gao, X.-F. &Zhang, L.-B. 2015. Phylogeny and biogeography of wild roses with specific attention to polyploids. Annals of Botany 115: 275-291.
Gebauer, P. & Müller, S. 2007. Beitrag zur Kenntnis der Wildrosenflora Ostsachsens. Teil 1: Die Weinrosen (Rosa L. sect. Caninae DC. subsect. Rubigineae Chr.). Berichte der Naturfoschenden Gesellschaft der Oberlausitz 15: 33-64. (Volltext)
Graham, G. G. & Primavesi, A. L. 1993. Roses of Great Britain and Ireland. BSBI Handbook 7. Botanical Society of the British Isles, London.
Gu, C. & Robertson, K. R. 2003. Rosa multiflora Thunb. In: Wu, Z.-Y., Raven, P. H. & Hong, D.-Y. (Hrsg.). Flora of China. Vol. 9. Missouri Botanical Garden Press, St. Louis: 370.
Henker, H. & Schulze, G. 1999. Rosacolumnifera - eine neue Rosenart aus der Weinrosen-Gruppe. Acta Rhodologica 2: 13-18.
Henker, H. 2000. Rosa L. In: Conert, J., Jäger, E. J., Kadereit, J. W., Schulze-Motel, W., Wagenitz, G. & Weber, H. E. (Hrsg.). Gustav Hegi -Illustrierte Flora von Mitteleuropa. Bd. IV, Teil 2C Spermatophyta: Angiospermae: Dicotyledones 2 (4) Rosaceae (Rosengewächse). 2. Auflage. Parey Buchverlag Berlin: 1-108.
Henker, H. 2011. Rosa L. In: Jäger, E. J. (Hrsg.). Rothmaler, Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband. 20. Auflage. Spektrum AkademischerVerlag Heidelberg: 444-553.
Herklotz, V. & Ritz, C. M. 2014. Spontane Hybridisierung von Hundsrosen (Rosa L . sect . Caninae (DC). Ser.) an einem natürlichen Vorkommen in der Oberlausitz (Sachsen, Deutschland). Peckiana 9: 119-131. (Volltext Zeitschriftenband)
Herklotz V.& Ritz C.M. 2017. Multiple and asymmetric origin of polyploid dogrose hybrids (Rosa L. sect. Caninae (DC.) Ser.) involving unreduced gametes. Annals of Botany 120: 209-220. (https://doi.org/10.1093/aob/mcw217)
Herklotz, V., Mieder, N. & Ritz, C. M. 2017. Cytological, genetic and morphological variation in mixed stands of dogroses (Rosa section Caninae; Rosaceae) in Germany with a focus on the hybridogenic R. micrantha. Botanical Journal of the Linnean Society 184: 254-271. (https://doi.org/10.1093/botlinnean/box025)
Herklotz V., Kovařík A., Lunerová L., Lippitsch S., Groth M. & Ritz C.M. 2018. The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids (Rosa L. sect. Caninae (DC.) Ser.) exhibiting non-symmetrical meiosis. Plant Journal, 94 (1): 77-90. (https://doi.org/10.1111/tpj.13843)
Herrmann, J. 1762. Dissertatio Inauguralis Botanico-Medica de Rosa. Straßburg. Officina J.H. Heitz. (Volltext)
Joly, S., Starr, J. R., Lewis, W. H. & Bruneau, A. 2006. Polyploid and hybrid evolution in roses east of the Rocky Mountains. American Journal of Botany 93: 412-425. (Volltext)
Kaplan, K. 2015. Rosa mollis, eine eigene Sippe neben Rosa villosa? – Ein altes Problem der Rosensystematik, nachvollzogen in Aosta/Italien. Floristische Rundbriefe 48/49: 13-42.
Keller, R. 1931. Synopsis Rosarum Spontanearum Europae Mediae. Übersicht über die mitteleuropäischen Wildrosen mit besonderer Berücksichtigung ihrer schweizerischen Fundorte. Denkschriften der Schweizerischen Naturforschenden Gesellschaft Bd. LXV. Kommissionsverlag von Gebrüder Fretz A.G., Zürich. (Textband) (Atlasband)
Kellner, A., Ritz, C. M. & Wissemann, V. 2012. Hybridization with invasive Rosa rugosa threatens the genetic integrity of native Rosa mollis. Botanical Journal of the Linnean Society 170: 472-484. (Volltext)
Kellner, A., Ritz, C. M. & Wissemann, V. 2014. Low genetic and morphological differentiation in the European species complex of Rosa sherardii, R. mollis and R. villosa (Rosa section Caninae subsection Vestitae). Botanical Journal of the Linnean Society 174: 240-256. (https://doi.org/10.1111/boj.12124)
Koopman, W. J. M., Wissemann, V., De Cock, K., Van Huylenbroeck, J., De Riek, J., Sabatino, G. J. H., Visser, D., Vosman, B., Ritz, C. M., Maes, B., Werlemark, G., Nybom, H., Debener, T., Linde, M. & Smulders, M. J. M. 2008. AFLP markers as a tool to reconstruct complex relationships: A case study in Rosa (Rosaceae). American Journal of Botany 95: 353-366.
Kovarik, A., Werlemark, G., Leitch, A. R., Souckova-Skalicka, K., Lim, Y. K., Khaitová, L., Koukalova, B. & Nybom, H. 2008. The asymmetric meiosis in pentaploid dogroses (Rosa sect. Caninae) is associated with a skewed distribution of rRNA gene families in the gametes. Heredity 101: 359-367.
Lange, H. 1961. Die Säulengrifflige Rose (Rosa stylosa Desv.) in Westfalen. Natur und Heimat 21: 41-44.
Lauber, K. & Wagner, G. 1996. Flora Helvetica. Verlag Paul Haupt Bern, Stuttgart, Wien.
Lüth, M. 2000. Rosa abietina und andere Funde von Wildrosen aus Südbaden. Acta Rhodologica II: 65-74.
McNeill, J., Barrie, F. R., Burdet, H. M., Demoulin, V., Hawksworth, D. L., Marhold, K., Nicolson, D. H., Prado, J., Silva, P. C., Skog, J. E., Wiersema, J. H. &Turland, N. J. (Hrsg.) 2006. International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005. Regnum Vegetabile 146. Gantner Verlag, Ruggell, Liechtenstein. (Online-Version)
Nieschalk, A. & Nieschalk, C. 1975. Beiträge zur Kenntnis der Rosenflora Nordhessens I. Der Formenkreis um Rosa elliptica Tausch (Keilblättrige Rose). Philippia II/5: 299-316. (Volltext)
Nieschalk, A. & Nieschalk, C. 1978. Beiträge zur Kenntnis der Rosenflora Nordhessens II. Der Formenkreis um Rosa agrestis Savi (Feldrose). Philippia III/5: 389-407. (Volltext)
Nieschalk, A. & Nieschalk, C. 1980. Beiträge zur Kenntnis der Rosenflora Nordhessens III. Der Formenkreis um Rosa micrantha Borrer ex. Sm. (Kleinblütige Rose). Philippia IV/3: 213-233. (Volltext)
Nieschalk, A. & Nieschalk, C. 1981. Beiträge zur Kenntnis der Rosenflora Nordhessens IV. Der Formenkreis um Rosa rubiginosa L. (Weinrose). Phillipia IV/5: 388-413. (Volltext)
Nieschalk, C. 1986. Beiträge zur Kenntnis der Rosenflora Nordhessens V. Die Formenkreise um Rosa tomentosa Sm., Filzige Rose, Rosa scabriuscula Sm. in Sowerby, Kratz-Rose, Rosa villosa L., Zotttige Rose, Apfel-Rose und Rosa sherardii Davies, Übersehene Rose. Philippia V/4: 318-345. (Volltext)
Nieschalk, C. 1989. Beiträge zur Kenntniss der Rosenflora Nordhessens VI. Gattung Rosa L. sect. Caninae DC. subsect. Eucaninae Crépin. Die Formenkreise der Rosa canina-Gruppe. Philippia VI/2: 155-199. (Volltext)
Nieschalk, C. 1993. Beiträge zur Kenntnis der Rosenflora Nordhessens VII. Die Formenkreise um Rosa arvensis Hudson (Kriechende Rose), Rosa pimpinellifolia L. (Bibernell-Rose) und Rosa jundzillii Besser (Rauhblättrige Rose) sowie einiger in Nordhessen nur angepflanzt oder verwildert vorkommender Rosenarten. Philippia VI/4: 313-330. (Volltext)
Nybom, H., Esselink, G. D., Werlemark, G. & Vosman, B.2004. Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploid and hemisexual dog-roses, Rosa L. Sect. Caninae DC. Heredity 92: 139-150.
Nybom, H., Esselink, G. D., Werlemark, G., Leus, L. & Vosman, B. 2006. Unique genomic configuration revealed by microsatellite DNA in polyploid dogroses, Rosa sect. Caninae. Journal of Evolutionary Biology 19: 635-648.
Raabe, U., Büscher, D., Fasel, P., Foerster, E., Götte, R., Haeupler, H., Jagel, A., Kaplan, K., Keil, P., Kulbrock, P., Loos, G.H., Neikes, N., Schumacher, W., Sumser, H. & Vanberg, C. unter Mitarbeit von Buch, C., Fuchs, R., Gausmann, P., Gorissen, I., Gottschlich, G., Haecker, S., Itjeshorst, W., Korneck, D., Matzke-Hajek, G., Schmelzer, M., Weber, H.E. & Wolff-Straub, R. 2011. Rote Liste und Artenverzeichnis der Farn- und Blütenpflanzen –Spermatophyta et Pteridophyta – in Nordrhein-Westfalen. In: Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (Hrsg.). Rote Liste der gefährdeten Pflanzen, Pilze und Tiere in Nordrhein-Westfalen. 4. Fassung. LANUV-Fachbericht 36, Bd. 1: 49-183.
Rehder A. 1940. Manual of cultivated trees and shrubs hardy in North America. Macmillan, New York.
Reichert, H. 1996. Die Legimität der von Linné publizierten Namen mitteleuropäischer Wildrosen - Ein Überblick über den gegenwärtigen Stand der Diskussion. Gleditschia 24: 13-23.
Reichert, H. 1998a. Die zwei Wuchstypen bei Rosen der Sektion Caninae und ein Vorschlag für eine Kurzbezeichnung derselben. Acta Rhodologica 1: 29-35.
Reichert, H. 1998b. Die Infloreszenz mitteleuropäischer Wildrosen der Sektion Caninae in Hinblick auf ihre Bestimmungsmerkmale. Acta Rhodologica 1: 83-86.
Reichert, H. 2011. Quantitative Merkmale mitteleuropäischer Wildrosen (Rosaceae: Rosa) und ihre Eignung als Bestimmungsmerkmale. Kochia 5: 39-65.
Ritz, C. M. 2021. Rosa. L. In: Müller, F., Ritz, C., Welk, E. & Wesche, K. (Hrsg.). Rothmaler, Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband. 22. Auflage. Springer Spektrum: 404-411.
Ritz, C. M. & Wissemann, V. 2003. Male correlated non-matroclinal character inheritance in reciprocal hybrids of Rosa section Caninae (DC.) Ser. (Rosaceae). Plant Systematics and Evolution 241: 213-221.
Ritz, C. M. & Wissemann, V. 2011. Microsatellite analyses of artificial and spontaneous dogrose hybrids reveal the hybridogenic origin of Rosa micrantha by the contribution of unreduced gametes. Journal of Heredity 102: 217-227.
Ritz, C. M., Köhnen, I., Groth, M., Theissen, G. & Wissemann, V. 2011. To be or not to be the odd one out - Allele-specific transcription in pentaploid dogroses (Rosa L. sect. Caninae (DC.) Ser). BMC Plant Biology 11: 37.
Ritz, C. M., Schmuths, H. & Wissemann, V. 2005. Evolution by reticulation: European dogroses originated by multiple hybridization across the genus Rosa. Journal of Heredity 96: 4-14.
Rowley, G. D. 1976. Typification of the Genus Rosa L. Taxon 25: 181.
Rowley, G. D. 1992. Typ. cons. Prop.: R. cinnamomea L. In: Nicolson, D. H. (Hrsg.). Seventy-two proposals for the conservation of types of selected Linnaean generic names, the report of Subcommittee 3C on the lectotypification of Linnaean generic names. Taxon 41: 568-569.
Seitz, B., Ristow, M., Klemm, G., Rätzel, S., Schulze, G. & Hoffmann, M. 2004. Zur Verbreitung der Wildrosen und verwilderten Kulturrosen in Berlin und Brandenburg. Verhandlungen des Botanischen Vereins von Berlin und Brandenburg 137: 137-267.
Sell, P. & Murrell, G. 2014. Rosa L. In: Flora of Great Britain and Ireland. Vol. 2: Capparaceae–Rosaceae. Cambridge University Press: 352-385.
Smulders, M. J. M., Arens, P., Koning-Boucoiran, C. F. S., Gitonga, V. W. , Krens, F. A., Atanassov, A., Atanassov, I., Rusanov, K .E., Bendahmane, M., Dubois, A., Raymond, O., Caissard, J. C. , Baudino, S., Crespel, L., Gudin, S., Ricci, S. C., Kovatcheva, N., Van Huylenbroeck, J., Leus, L., Wissemann, V., Zimmermann, H., Hensen, I., Werlemark, G. & Nybom, H. 2011. Rosa. In: Kole, C. (Hrsg.). Wild crop relatives: genomic and breeding resources: plantation and ornamental crops. Springer-Verlag, Berlin, Heidelberg: 243-275.
Täckholm, G. 1920. On the cytology of the genus Rosa. Svensk Botanisk Tidskrift 14: 300-311. (Volltext)
Täckholm, G. 1922. Zytologische Studien über die Gattung Rosa. Acta Horti Bergiani 7: 97-381. (Volltext)
Timmermann, G. 1992. Rosa L. 1753. In: Sebald, O., Seybold, S. & Philippi, G. (Hrsg.). Die Farn- und Blütenpflanzen Baden-Württembergs. Bd. 3: Spezieller Teil (Spermatophyta, Unterklasse Rosidae) Droseraceae bis Fabaceae. Eugen Ulmer Verlag Stuttgart: 64-101.
Timmermann, G. & Müller, T. 1994. Wildrosen und Weißdorne Mitteleuropas. Landschaftsgerechte Sträucher und Bäume. Verlag des Schwäbischen Albvereins e.V. Stuttgart.
Urban, R. & Mayer, A. 2008. Floristische und vegetationskundliche Besonderheiten aus den Bayerischen Alpen - Funde im Rahmen der Alpenbiotopkartierung - Teil 3. Berichte der Bayrischen Botanischen Gesellschaft 78: 103-128. (Volltext Zeitschriftenband)
Werlemark, G. 2000. Evidence of apomixis in hemisexual dogroses, Rosa section Caninae. Sexual Plant Reproduction 12: 353-359.
Wissemann, V. & Hellwig, F. H. 1997. Reproduction and hybridisation in the Genus Rosa, Section Caninae (Ser.) Rehd. Botanica Acta 110: 251-256.
Wissemann, V. & Ritz, C. M. 2005. The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Botanical Journal of the Linnean Society 147: 275-290.
Wissemann, V. & Ritz, C. M. 2007. Evolutionary patterns and processes in the genus Rosa (Rosaceae) and their implications for host-parasite co-evolution. Plant Systematics and Evolution 266: 79-89.
Wissemann, V. 2003. Conventional taxonomy of wild roses. In: Roberts, A., Debener, T & Gudin, S. (Hrsg.). Encyclopedia of Rose Science. Elsevier, London: 111-117.
Wissemann, V., Gallenmüller, F., Ritz, C., Steinbrecher, T. & Speck, T. 2006. Inheritance of growth form and mechanical characters in reciprocal polyploid hybrids of Rosa section Caninae - Implications for the ecological niche differentiation and radiation process of hybrid offspring. Trees 20: 340-347.
Zhang, J., Esselink, G. D., Che, D., Fougère-Danezan, M., Arens, P. & Smulders, M. J. M. 2013. The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat. Journal of Horticultural Science and Biotechnology 88: 85-92.
Wesenberg, J., Gebauer, P. & Ritz, C.M. 2015 (aktualisiert 2024). Rosa L. In: Dressler, S., Gregor, T., Hellwig, F. H., Korsch, H., Wesche, K., Wesenberg, J. & Ritz, C. M. Bestimmungskritische Taxa zur Flora von Deutschland. Herbarium Senckenbergianum Frankfurt/Main, Görlitz & Herbarium Haussknecht Jena. [online] https://bestikri.senckenberg.de